Abstract

The complexity of computing the Fourier transform is a longstanding open problem. Very recently, Ailon (2013, 2014, 2015) showed in a collection of papers that, roughly speaking, a speedup of the Fourier transform computation implies numerical ill-condition. The papers also quantify this tradeoff. The main method for proving these results is via a potential function called quasi-entropy, reminiscent of Shannon entropy. The quasi-entropy method opens new doors to understanding the computational complexity of the important Fourier transformation. However, it suffers from various obvious limitations. This paper is motivated by one such limitation, related to the computation of near-orthogonal matrices that have the Fourier transform ‘hidden’ in low-order bits. While partly overcoming this limitation, the paper sheds light on new interesting, open problems on the intersection of computational complexity and group theory. The paper also explains why this research direction, if fruitful, has a chance of solving much bigger questions about the complexity of the Fourier transform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.