Abstract

Kostka, Littlewood-Richardson, Kronecker, and plethysm coefficients are fundamental quantities in algebraic combinatorics, yet many natural questions about them stay unanswered for more than 80 years. Kronecker and plethysm coefficients lack “nice formulas”, a notion that can be formalized using computational complexity theory. Beyond formulas and combinatorial interpretations, we can attempt to understand their asymptotic behavior in various regimes, and inequalities they could satisfy. Understanding these quantities has also applications outside of combinatorics. On the one hand, the asymptotics of structure constants is closely related to understanding the [limit] behavior of vertex and tiling models in statistical mechanics. More recently, these structure constants have been involved in establishing computational complexity lower bounds and separation of complexity classes like VP vs VNP, the algebraic analogs of P vs NP in arithmetic complexity theory. Here we discuss the outstanding problems related to asymptotics, positivity, and complexity of structure constants focusing mostly on the Kronecker coefficients of the symmetric group and, less so, on the plethysm coefficients. This expository paper is based on the talk presented at the Open Problems in Algebraic Combinatorics coneference in May 2022.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.