Abstract
Simple SummarySkinks are the most species-rich group of lizards and are widely distributed around the world. The family Scincidae (Reptilia: Lacertiformes) includes limbed and limbless representatives occupying diverse habitats and showing a range of morphologies. Both limbed and limbless skinks have unique locomotion patterns in their habitats. Locomotion is the process of energy consumption, of which different modes may have different energy demands. As the center of energy metabolism in organisms, mitochondria provide most of the energy for physiological and biochemical activities via oxidative phosphorylation. Here, we employed mitochondrial genomes to investigate potential selective pressures among limbless skinks. Isopachys gyldenstolpei, as a typical limbless skink, has a different locomotion pattern compared to a limbed skink. Thus, I. gyldenstolpei can be used to study whether limb loss has a positive selection on mitochondrial genes. Two typical limbed skinks, Sphenomorphus indicus and Tropidophorus hainanus, were included in this study to compare the selective pressure analysis on mitochondrial genomes. In addition, the phylogenetic relationships within Scincidae are also discussed.In order to adapt to diverse habitats, organisms often evolve corresponding adaptive mechanisms to cope with their survival needs. The species-rich family of Scincidae contains both limbed and limbless species, which differ fundamentally in their locomotor demands, such as relying on the movement of limbs or only body swing to move. Locomotion requires energy, and different types of locomotion have their own energy requirements. Mitochondria are the energy factories of living things, which provide a lot of energy for various physiological activities of organisms. Therefore, mitochondrial genomes could be tools to explore whether the limb loss of skinks are selected by adaptive evolution. Isopachys gyldenstolpei is a typical limbless skink. Here, we report the complete mitochondrial genomes of I. gyldenstolpei, Sphenomorphus indicus, and Tropidophorus hainanus. The latter two species were included as limbed comparator species to the limbless I. gyldenstolpei. The results showed that the full lengths of the mitochondrial genomes of I. gyldenstolpei, S. indicus, and T. hainanus were 17,210, 16,944, and 17,001 bp, respectively. Three mitochondrial genomes have typical circular double-stranded structures similar to other reptiles, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and the control region. Three mitochondrial genomes obtained in this study were combined with fifteen mitochondrially complete genomes of Scincidae in the NCBI database; the phylogenetic relationship between limbless I. gyldenstolpei and limbed skinks (S. indicus and T. hainanus) is discussed. Through BI and ML trees, Sphenomorphinae and Mabuyinae were monophyletic, while the paraphyly of Scincinae was also recovered. The limbless skink I. gyldenstolpei is closer to the species of Tropidophorus, which has formed a sister group with (T. hainanus + T. hangman). In the mitochondrial genome adaptations between limbless I. gyldenstolpei and limbed skinks, one positively selected site was found in the branch-site model analysis, which was located in ND2 (at position 28, BEB value = 0.907). Through analyzing the protein structure and function of the selected site, we found it was distributed in mitochondrial protein complex I. Positive selection of some mitochondrial genes in limbless skinks may be related to the requirement of energy to fit in their locomotion. Further research is still needed to confirm this conclusion though.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.