Abstract

BackgroundThe big-headed turtle (Platysternon megacephalum) from east Asia is the sole living representative of a poorly-studied turtle lineage (Platysternidae). It has no close living relatives, and its phylogenetic position within turtles is one of the outstanding controversies in turtle systematics. Platysternon was traditionally considered to be close to snapping turtles (Chelydridae) based on some studies of its morphology and mitochondrial (mt) DNA, however, other studies of morphology and nuclear (nu) DNA do not support that hypothesis.ResultsWe sequenced the complete mt genome of Platysternon and the nearly complete mt genomes of two other relevant turtles and compared them to turtle mt genomes from the literature to form the largest molecular dataset used to date to address this issue. The resulting phylogeny robustly rejects the placement of Platysternon with Chelydridae, but instead shows that it is a member of the Testudinoidea, a diverse, nearly globally-distributed group that includes pond turtles and tortoises. We also discovered that Platysternon mtDNA has large-scale gene rearrangements and possesses two, nearly identical, control regions, features that distinguish it from all other studied turtles.ConclusionOur study robustly determines the phylogenetic placement of Platysternon and provides a well-resolved outline of major turtle lineages, while demonstrating the significantly greater resolving power of comparing large amounts of mt sequence over that of short fragments. Earlier phylogenies placing Platysternon with chelydrids required a temporal gap in the fossil record that is now unnecessary. The duplicated control regions and gene rearrangements of the Platysternon mtDNA probably resulted from the duplication of part of the genome and then the subsequent loss of redundant genes. Although it is possible that having two control regions may provide some advantage, explaining why the control regions would be maintained while some of the duplicated genes were eroded, examples of this are rare. So far, duplicated control regions have been reported for mt genomes from just 12 clades of metazoans, including Platysternon.

Highlights

  • The big-headed turtle (Platysternon megacephalum) from east Asia is the sole living representative of a poorly-studied turtle lineage (Platysternidae)

  • The maximum parsimony (MP) bootstrap values for testudinoid affinities are not strong, the traditional hypothesis linking Platysternon with Chelydridae was rejected by statistical tests of hypothesis compatibility (MP, Wilcoxon signed ranks test: L difference = 68, z = -2.2489, p = 0.0245; maximum likelihood (ML), solutions than the unconstrained ML tree (SH test): -lnL difference = 38.5531, p = 0.0336)

  • While MP constraint searches that retained only those trees wherein Platysternon is sister to the Testuguria are significantly longer than the unconstrained estimate of turtle phylogeny (Wilcoxon signed ranks test: L difference = 62, z = 2.0769, p < 0.0001), identical ML constraint searches failed to produce topologies that were significantly worse solutions than the unconstrained ML tree (SH test: 15.4560, p = 0.264)

Read more

Summary

Introduction

The big-headed turtle (Platysternon megacephalum) from east Asia is the sole living representative of a poorly-studied turtle lineage (Platysternidae). It has no close living relatives, and its phylogenetic position within turtles is one of the outstanding controversies in turtle systematics. Platysternon megacephalum is the sole living representative of a poorly-studied turtle lineage (Platysternidae), and its phylogenetic position within turtles is not established. It ranges from Myanmar, Thailand, Laos, and Vietnam to southern China where it inhabits rocky mountain streams. Platysternon feeds on a variety of prey, including freshwater crustaceans and molluscs. In addition to its large head, it has an unusually long tail for a turtle

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call