Abstract

In this paper, we describe the complete chloroplast genome of Lolium arundinaceum. This sequence is the culmination of a long-term project completed by >400 undergraduates who took general genetics at Middle Tennessee State University from 2004-2007. It was undertaken in an attempt to introduce these students to an open-ended experiential/exploratory lesson to produce and analyze novel data. The data they produced should provide the necessary information for both phylogenetic comparisons and plastome engineering of tall fescue. The fescue plastome (GenBank FJ466687) is 136048 bp with a typical quadripartite structure and a gene order similar to other grasses; 56% of the plastome is coding region comprised of 75 protein-coding genes, 29 tRNAs, four rRNAs, and one hypothetical coding region (ycf). Comparisons of Poaceae plastomes reveal size differences between the PACC (subfamilies Panicoideae, Arundinoideae, Centothecoideae, and Chloridoideae) and BOP (subfamilies Bambusoideae, Oryzoideae, and Pooideae) clades. Alignment analysis suggests that several potentially conserved large deletions in previously identified intergenic length polymorphic regions are responsible for the majority of the size discrepancy. Phylogenetic analysis using whole plastome data suggests that fescue closely aligns with Lolium perenne. Some unique features as well as phylogenetic branch length calculations, however, suggest that a number of changes have occurred since these species diverged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.