Abstract

Hydrogen peroxide (H2O2) is used as a fuel and propellant in fuel cells and rockets due to its prominent oxidizing and combustion properties. In addition, hydrogen peroxide, as the energetic material with the simplest molecular structure, exhibits general detonation performance under external stimulation. Based on the first-principle method, we calculated the two crystal structure, electronic properties related to sensitivity closely, optical properties of pure hydrogen peroxide, and 48wt.% hydrogen peroxide (H6O4) under pressure. We found that the band gaps of H2O2 and H6O4 become larger under pressure and the former is larger than the latter; neither has the tendency of metallization phase change. The added peak II of TDOS from H6O4 compared with H2O2 come from molecular H2O in crystal structure. The pressure-induced peak (peak 2 and peak II of TDOS from H2O2 and H6O4) splitting is caused by changes (stronger) in the intermolecular hydrogen bond environment in the crystal under pressure. The specific macroscopic optical properties have the characteristics of overall blue-shift under pressure, which is due to the blueshift of the conduction band and the increase of the band gap. We hope to provide some reference and guidance for deeper future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call