Abstract

Consider a bounded, strongly pseudoconvex domain D⊂Cn with minimal smoothness (namely, the class C2) and let b be a locally integrable function on D. We characterize boundedness (resp., compactness) in Lp(D),p>1, of the commutator [b,P] of the Bergman projection P in terms of an appropriate bounded (resp. vanishing) mean oscillation requirement on b. We also establish the equivalence of such notion of BMO (resp., VMO) with other BMO and VMO spaces given in the literature. Our proofs use a dyadic analog of the Berezin transform and holomorphic integral representations going back (for smooth domains) to N. Kerzman & E. M. Stein, and E. Ligocka.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.