Abstract

We interpret the combinatorial Mandelbrot set in terms of \it{quadratic laminations} (equivalence relations $\sim$ on the unit circle invariant under $\sigma_2$). To each lamination we associate a particular {\em geolamination} (the collection $\mathcal{L}_\sim$ of points of the circle and edges of convex hulls of $\sim$-equivalence classes) so that the closure of the set of all of them is a compact metric space with the Hausdorff metric. Two such geolaminations are said to be {\em minor equivalent} if their {\em minors} (images of their longest chords) intersect. We show that the corresponding quotient space of this topological space is homeomorphic to the boundary of the combinatorial Mandelbrot set. To each equivalence class of these geolaminations we associate a unique lamination and its topological polynomial so that this interpretation can be viewed as a way to endow the space of all quadratic topological polynomials with a suitable topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.