Abstract

Topological dynamics is, roughly, the study of phenomena related to iterations of continuous maps from a metric space to itself. We show how the rewrite relation in term rewriting gives rise to dynamical systems in two distinct, natural ways: (A) One in which any deterministic rewriting strategy induces a dynamical system on the set of finite and infinite terms endowed with the usual metric, and (B) one in which the unconstrained rewriting relation induces a dynamical system on sets of sets of terms, specifically the set of compact subsets of the set of finite and infinite terms endowed with the Hausdorff metric. For both approaches, we give sufficient criteria for the induced systems to be well-defined dynamical systems and for (A) we demonstrate how the classic topological invariant called topological entropy turns out to be much less useful in the setting of term rewriting systems than in symbolic dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.