Abstract
Laser spectroscopy experiments at radioactive ion beam facilities around the world investigate properties of exotic nuclei for scientific endeavours such as, but not limited to, the investigation of nuclear structure. Advancements in experimental sensitivity and performance are continuously needed in order to extend the reach of nuclei that can be measured. The collinear fast beam laser spectroscopy (Cfbs) setup at Triumf, coupled to an out-of-plane radio-frequency quadrupole Paul trap, enables measurements of some of the most fundamental nuclear properties for long-lived ground and isomeric states. The first comprehensive overview of the Cfbs experiment is provided along with descriptions of key developments that extend the reach of laser spectroscopy experiments. A novel data acquisition technique structured around three-dimensional spectra is presented, where the integration of a custom multi-channel-scalar provides photon counts correlated with arrival time and acceleration voltage for post-experiment analysis. In addition, new rapid light manipulation techniques are discussed that suppress undesirable hyperfine pumping effects and regain losses in experimental efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.