Abstract
The streaming instability is a promising mechanism to induce the formation of planetesimals. Nonetheless, this process has been found in previous studies to require either a dust-to-gas surface density ratio or a dust size that is enhanced compared to observed values. Employing two-dimensional global simulations of protoplanetary disks, we show that the vertical shear instability and the streaming instability in concert can cause dust concentration that is sufficient for planetesimal formation for lower surface density ratios and smaller dust sizes than the streaming instability in isolation, and in particular under conditions that are consistent with observational constraints. This is because dust overdensities forming in pressure bumps induced by the vertical shear instability act as seeds for the streaming instability and are enhanced by it. While our two-dimensional model does not include self-gravity, we find that strong dust clumping and the formation (and dissolution) of gravitationally unstable overdensities can be robustly inferred from the evolution of the maximum or the mean dust-to-gas volume density ratio. The vertical shear instability puffs up the dust layer to an average mid-plane dust-to-gas density ratio that is significantly below unity. We therefore find that reaching a mid-plane density ratio of one is not necessary to trigger planetesimal formation via the streaming instability when it acts in unison with the vertical shear instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.