Abstract

The excellent mechanical properties of biocomposites has attracted a lot of research attention, and people have started attempting to fabricate biomimetic staggered composites. In this paper, the relationship between the equivalent coefficient of thermal expansion (CTE) and the microstructure of a biomimetic staggered composite is investigated. A shear-lag based thermalelastic analytical model is developed and is found to agree well with the finite element simulations. It is found that besides the volume fraction and the material constants of the constituent phases, the aspect ratio of the hard platelet plays an important role in the CTE of biocomposites. Hence, there are additional design parameters in staggered composites that can be used to adjust the CTE, which makes this type of composite promising in thermalelastic loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.