Abstract

The interaction of CO with a potassium covered Pt(111) surface is investigated using thermal desorption (TDS), high resolution electron energy loss (HREELS) and ultraviolet photoelectron (UPS) spectroscopies. When submonolayer amounts of potassium are preadsorbed, the adsorption energy of CO increases from 25 to 36 kcal/mole, while substantial shifts in the site occupancy from the linear to the bridged site are observed. The CO stretching vibrational frequencies are shown to decrease continuously with either increasing potassium coverage or decreasing CO coverage. A minimum CO stretching frequency of 1400 cm −1 is observed, indicative of a CO bond order of 1.5. The work function decreases by up to 4.5 eV at submonolayer potassium coverages, but then increases by 1.5 eV upon CO co-adsorption. The results indicate that the large adsorption energy, vibrational frequency and work function changes are due to molecular CO adsorption with a substantial charge donation from potassium through the platinum substrate and into the 2π ∗ CO orbital.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call