Abstract
Perceptual objects often comprise a visual and auditory signature that arrives simultaneously through distinct sensory channels, and cross-modal features are linked by virtue of being attributed to a specific object. Continued exposure to cross-modal events sets up expectations about what a given object most likely "sounds" like, and vice versa, thereby facilitating object detection and recognition. The binding of familiar auditory and visual signatures is referred to as semantic, multisensory integration. Whereas integration of semantically related cross-modal features is behaviorally advantageous, situations of sensory dominance of one modality at the expense of another impair performance. In the present study, magnetoencephalography recordings of semantically related cross-modal and unimodal stimuli captured the spatiotemporal patterns underlying multisensory processing at multiple stages. At early stages, 100 ms after stimulus onset, posterior parietal brain regions responded preferentially to cross-modal stimuli irrespective of task instructions or the degree of semantic relatedness between the auditory and visual components. As participants were required to classify cross-modal stimuli into semantic categories, activity in superior temporal and posterior cingulate cortices increased between 200 and 400 ms. As task instructions changed to incorporate cross-modal conflict, a process whereby auditory and visual components of cross-modal stimuli were compared to estimate their degree of congruence, multisensory processes were captured in parahippocampal, dorsomedial, and orbitofrontal cortices 100 and 400 ms after stimulus onset. Our results suggest that multisensory facilitation is associated with posterior parietal activity as early as 100 ms after stimulus onset. However, as participants are required to evaluate cross-modal stimuli based on their semantic category or their degree of congruence, multisensory processes extend in cingulate, temporal, and prefrontal cortices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.