Abstract

BackgroundCardiovascular magnetic resonance (CMR) phase contrast (PC) flow measurements suffer from phase offset errors. Background subtraction based on stationary phantom measurements can most reliably be used to overcome this inaccuracy. Stationary tissue correction is an alternative and does not require additional phantom scanning. The aim of this study was 1) to compare measurements with and without stationary tissue correction to phantom corrected measurements on different GE Healthcare CMR scanners using different software packages and 2) to evaluate the clinical implications of these methods.MethodsCMR PC imaging of both the aortic and pulmonary artery flow was performed in patients on three different 1.5 T CMR scanners (GE Healthcare) using identical scan parameters. Uncorrected, first, second and third order stationary tissue corrected flow measurement were compared to phantom corrected flow measurements, our reference method, using Medis QFlow, Circle cvi42 and MASS software. The optimal (optimized) stationary tissue order was determined per scanner and software program. Velocity offsets, net flow, clinically significant difference (deviation > 10% net flow), and regurgitation severity were assessed.ResultsData from 175 patients (28 (17–38) years) were included, of which 84% had congenital heart disease. First, second and third order and optimized stationary tissue correction did not improve the velocity offsets and net flow measurements. Uncorrected measurements resulted in the least clinically significant differences in net flow compared to phantom corrected data. Optimized stationary tissue correction per scanner and software program resulted in net flow differences (> 10%) in 19% (MASS) and 30% (Circle cvi42) of all measurements compared to 18% (MASS) and 23% (Circle cvi42) with no correction. Compared to phantom correction, regurgitation reclassification was the least common using uncorrected data. One CMR scanner performed worse and significant net flow differences of > 10% were present both with and without stationary tissue correction in more than 30% of all measurements.ConclusionPhase offset errors had a significant impact on net flow quantification, regurgitation assessment and varied greatly between CMR scanners. Background phase correction using stationary tissue correction worsened accuracy compared to no correction on three GE Healthcare CMR scanners. Therefore, careful assessment of phase offset errors at each individual scanner is essential to determine whether routine use of phantom correction is necessary.Trial registrationObservational Study

Highlights

  • Cardiovascular magnetic resonance (CMR) 2D-phase contrast (PC) imaging is used to quantify blood flow in the great arteries

  • Optimized stationary tissue correction per scanner and software program resulted in net flow differences (> 10%) in 19% (MASS) and 30% (Circle cvi42) of all measurements compared to 18% (MASS) and 23% (Circle cvi42) with no correction

  • Phase offset errors had a significant impact on net flow quantification, regurgitation assessment and varied greatly between CMR scanners

Read more

Summary

Introduction

Cardiovascular magnetic resonance (CMR) 2D-phase contrast (PC) imaging is used to quantify blood flow in the great arteries. Spins moving along a magnetic field gradient acquire a shift in their phase of rotation in comparison to stationary spins. This phase shift is proportional to the velocity of blood [1]. Common measurement errors of PC imaging include mismatched encoding velocity, deviation of the imaging plane, inadequate temporal resolution and spatial resolution and phase offset errors [1]. These errors can be overcome during scanning when the scanning operator is appropriately trained, except for phase offset errors [3, 4]. The aim of this study was 1) to compare measurements with and without stationary tissue correction to phantom corrected measurements on different GE Healthcare CMR scanners using different software packages and 2) to evaluate the clinical implications of these methods

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call