Abstract
A subfactor is an inclusion $N \subset M$ of von Neumann algebras with trivial centers. The simplest example comes from the fixed points of a group action $M^G \subset M$, and subfactors can be thought of as fixed points of more general group-like algebraic structures. These algebraic structures are closely related to tensor categories and have played important roles in knot theory, quantum groups, statistical mechanics, and topological quantum field theory. There is a measure of size of a subfactor, called the index. Remarkably, the values of the index below 4 are quantized, which suggests that it may be possible to classify subfactors of small index. Subfactors of index at most 4 were classified in the 1980s and early 1990s. The possible index values above 4 are not quantized, but once you exclude a certain family, it turns out that again the possibilities are quantized. Recently, the classification of subfactors has been extended up to index 5, and (outside of the infinite families) there are only 10 subfactors of index between 4 and 5. We give a summary of the key ideas in this classification and discuss what is known about these special small subfactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.