Abstract

The Weil algebra structure of the BRST transformation of topological quantum field theory is investigated. This structure appears in the gauge and ghost fields sector and is common to both topological quantum field theory and BRS gauge fixed non-abelian gauge theory. By the Weil algebra structure, we can derive the descent equations of topological quantum field theory which generate the Donaldson polynomials. The algebraic structure also reveals the geometrical meaning of the ghost fields ψ and ϕ in topological quantum field theory as the components of the total curvature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.