Abstract
In the paper ``A new class of codes for Boolean masking of cryptographic computations,'' Carlet, Gaborit, Kim, and Sole defined a new class of rate one-half binary codes called complementary information set (or CIS) codes. The authors then classified all CIS codes of length less than or equal to 12. CIS codes have relations to classical Coding Theory as they are a generali-zation of self-dual codes. As stated in the paper, CIS codes also have important practical applications as they may improve the cost of masking cryptographic algorithms against side channel attacks. In this paper, we give a complete classification result for length 14 CIS codes using an equivalence relation on $GL(n,\mathbb{F}_2)$. We also give a new classification for all binary $[16,8,3]$ and $[16,8,4]$ codes. We then complete the classification for length 16 CIS codes and give additional classifications for optimal CIS codes of lengths 20 and 26.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.