Abstract

<p style='text-indent:20px;'>BCH codes are a special subclass of cyclic codes and have many important applications in data storage and communication systems. In this paper, we investigate the structure of binary linear complementary dual (LCD) BCH codes with length <inline-formula><tex-math id="M2">\begin{document}$ n = \frac{{{2^m} + 1}}{3} $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ m \geq 7 $\end{document}</tex-math></inline-formula> is an odd integer. By exploring cyclotomic cosets modulo <inline-formula><tex-math id="M4">\begin{document}$ n $\end{document}</tex-math></inline-formula>, we determine the dimension of LCD BCH codes for designed distance <inline-formula><tex-math id="M5">\begin{document}$ \delta $\end{document}</tex-math></inline-formula> in the range <inline-formula><tex-math id="M6">\begin{document}$ 2 \le \delta \le{2^{\frac{{m + 1}}{2}}} $\end{document}</tex-math></inline-formula>. Furthermore, we compute the first five largest coset leaders modulo <inline-formula><tex-math id="M7">\begin{document}$ n $\end{document}</tex-math></inline-formula> and construct some binary LCD BCH codes. We also present two families of optimal binary linear codes from LCD BCH codes.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.