Abstract

AbstractA conservative hyperbolic two-parameter model of shear shallow-water flows is used to study the classical turbulent hydraulic jump. The parameters of the model, which are the wall enstrophy and the roller dissipation coefficient, are determined from measurements of the roller length and the deviation from the Bélanger equation of the sequent depth ratio (experimental data by Hager & Bremen,J. Hydraul. Res., vol. 27, 1989, pp. 565–585; and Hager, Bremen & Kawagoshi,J. Hydraul. Res., vol. 28, 1990, pp. 591–608). Stationary solutions to the model describe with a good accuracy the free-surface profile of the hydraulic jump. The model is also capable of predicting the oscillations of the jump toe. We show that if the upstream Froude number is larger than${\sim }1. 5$, the jump toe oscillates with a particular frequency, while for the Froude number smaller than 1.5 the solution becomes stationary. In particular, we show that for a given flow discharge, the oscillation frequency is a decreasing function of the Froude number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.