Abstract
In this article I give a rigorous construction of the classical and quantum photon field on non-compact manifolds with boundary and in possibly inhomogeneous media. Such a construction is complicated by zero-modes that appear in the presence of non-trivial topology of the manifold or the boundary. An important special case is {mathbb {R}}^3 with obstacles. In this case the zero modes have a direct interpretation in terms of the topology of the obstacle. I give a formula for the renormalised stress energy tensor in terms of an integral kernel of an operator defined by spectral calculus of the Laplace Beltrami operator on differential forms with relative boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.