Abstract

Special properties of realizations of supersymmetry on noncompact manifolds are discussed. On the basis of the supersymmetric scattering theory and the supersymmetric trace formulas, the absolute or relative Euler characteristic of a barrier inRN can be obtained from the scattering data for the Laplace operator on forms with absolute or relative boundary conditions. An analog of the Chern-Gauss-Bonnet theorem for noncompact manifolds is also obtained. The map from the stationary curve of an antiholomorphic involution on a compact Riemann surface to the real circle on the Riemann sphere, generated by a real meromorphic function is considered. An analytic expression for its topological index is obtained by using supersymmetric quantum mechanics with meromorphic superpotential on the Klein surface. Bibliography: 27 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.