Abstract

In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph G into a new graph μ(G), we now call the Mycielskian of G, which has the same clique number as G and whose chromatic number equals χ(G) + 1. Chang, Huang, and Zhu [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear] have investigated circular chromatic numbers of Mycielskians for several classes of graphs. In this article, we study circular chromatic numbers of Mycielskians for another class of graphs G. The main result is that χc(μ(G)) = χ(μ(G)), which settles a problem raised in [G. J. Chang, L. Huang, & X. Zhu, Discrete Math, to appear, and X. Zhu, to appear]. As χc(G) = and χ(G) = , consequently, there exist graphs G such that χc(G) is as close to χ(G) − 1 as you want, but χc(μ(G)) = χ(μ(G)). © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 63–71, 1999

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.