Abstract

The grain boundary structure of the Ni3(Fe,Cr) alloy is studied in states with a short and long-range order formed at the phase transition A1→L12. It is found that the new boundaries of general and special types are formed during an ordering annealing, wherein the special boundaries share increases. The spectrum of special boundaries is changed due to decreasing of ∑3 boundary share. It leads to weakening of the texture in the alloy with atomic long-range order. The features of change of the special boundaries spectrum at the phase transition A1→L12 in the Ni3(Fe,Cr) alloy are determined by decreasing of the stacking fault energy and the atomic mean square displacement at the chromium doping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call