Abstract
The chromatic sum of a graph is the smallest sum of colors among all proper colorings with natural numbers. The strength of a graph is the minimum number of colors necessary to obtain its chromatic sum. A natural generalization of chromatic sum is optimum cost chromatic partition (OCCP) problem, where the costs of colors can be arbitrary positive numbers. Existing results about chromatic sum, strength of a graph, and OCCP problem are presented together with some recent developments. The focus is on polynomial algorithms for some families of graphs and NP‐completeness issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.