Abstract
The chromatic sum of a graph G is the smallest total among all proper colorings of G using natural numbers. It was shown that computing the chromatic sum is NP-hard. In this article we prove that a simple greedy algorithm applied to sparse graphs gives a good approximation of the chromatic sum. For all graphs the existence of a polynomial time algorithm that approximates the chromatic sum with a linear function error implies P = NP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.