Abstract
A crucial step in the Erdos-Renyi (1960) proof that the double-jump threshold is also the planarity threshold for random graphs is shown to be invalid. We prove that whenp=1/n, almost all graphs do not contain a cycle with a diagonal edge, contradicting Theorem 8a of Erdos and Renyi (1960). As a consequence, it is proved that the chromatic number is 3 for almost all graphs whenp=1/n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.