Abstract

Shamir and Spencer proved in the 1980s that the chromatic number of the binomial random graph $G_{n,p}$ is concentrated in an interval of length at most $\omega\sqrt{n}$, and in the 1990s Alon showed that an interval of length $\omega\sqrt{n}/\log n$ suffices for constant edge-probabilities $p\in (0,1)$. We prove a similar logarithmic improvement of the Shamir-Spencer concentration results for the sparse case ${p=p(n) \to 0}$, and uncover a surprising concentration `jump' of the chromatic number in the very dense case ${p=p(n) \to 1}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.