Abstract
Periosteum contains undifferentiated mesenchymal stem cells that possess the potential for chondrogenesis during cartilage repair and in fracture healing. With aging, the chondrogenic potential of periosteum declines significantly. An organ-culture model was used to investigate the relationship between the chondrogenic potential of periosteum and aging. A total of 736 periosteal explants from the proximal medial tibiae of 82 rabbits, aged 2 weeks to 2 years, were cultured in agarose suspension conditions conductive for chondrogenesis, and analyzed using histomorphometry, collagen typing, wet weight measurement, 3H-thymidine and 35S-sulfate uptake, autoradiography, and PCNA immunostaining. The rabbits were skeletally mature by 6 months and stopped increasing in weight by 12 months. Chondrogenesis declined significantly with age ( P<0.0001) and was maximal in the 1.5–2 month-old rabbits. Explants from the 6 month-old rabbits formed 50% less cartilage, and by 12 months chondrogenesis reached a steady state minimal level. In parallel with this decrease in chondrogenic potential similar decreases were measured in 3H-thymidine uptake ( P<0.0001), 35S-sulfate uptake ( P=0.0117), as well as the thickness ( P<0.0001) and the total number of cells in the cambium layer of the periosteum ( P<0.0001). Autoradiography with 3H-thymidine and PCNA immunostaining confirmed the measured decrease in proliferative activity in the cambium layer where the chondrocyte precursors reside, although the percentage of proliferating cells did not change significantly with age. The most dramatic change was the marked decrease (87%) in the thickness and total cell number in the cambium layer of the perisoteum between the 2 and 12 month-old rabbits ( P<0.05). These data confirm a decline in the chondrogenic potential of periosteum with aging. Thus, one possibility for improving cartilage formation by periosteal transplantation after skeletal maturity would be to stimulate an increase in the total number of cells in the chondrocyte precursor pool early during chondrogenesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have