Abstract
Problem definition: Online retailing platforms are increasingly relying on personalized recommender systems to help guide consumer choice. An important but understudied question in such settings is how many products to include in a recommendation set. In this work, we study how the number of recommended products influences consumers’ search and purchase behavior in an online personalized recommender system within a retargeting setting. Methodology/results: Via a field experiment involving 1.6 million consumers on an online retailing platform, we causally demonstrate that consumers’ likelihood of purchasing any product from the recommendation set first increases then decreases as the number of recommended products increases. Importantly, as much as 64% of the decrease in purchase probability (i.e., the choice overload effect) can be attributed to a decrease in consumers’ likelihood of starting a search (i.e., clicking on any recommended product). We discuss the possible behavioral mechanisms driving these results and analyze how these effects could be heterogeneous across different product categories, price ranges, and timing. Managerial implications: This work presents real-world experimental evidence for the choice overload effect in online retailing platforms, highlights the important role of consumer search behavior in driving this effect, and sheds light on when and how limiting the number of options in a recommender system may be beneficial to online retailers. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0659 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.