Abstract

A theory of spin and charge transport in bounded metallic magnets has been constructed, which takes into account the effects of spin-orbit scattering of conduction electrons by crystal lattice defects. The theory can be used to describe the spin Hall effect and the anomalous Hall effect and can serve as a basis for describing the phenomena of spin-orbitronics. Phenomenological boundary conditions for the charge and spin fluxes at the interface between two different metals have been formulated, on the basis of which the injection of a pure spin current into a helimagnet, which arises in a normal metal as a manifestation of the spin Hall effect, is described. The existence of an “effect of chiral polarization of a pure spin current” is predicted, which consists in the appearance in a helimagnet of a longitudinally polarized pure spin current and a longitudinal component of the nonequilibrium electron magnetization, depending on the chirality of the helimagnet helix, upon injection of a transversely polarized spin current from a normal metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.