Abstract

The pattern of peripheral nerve inputs into the dorsal column nuclei, cuneate and gracile, was investigated in the prosimian Galago garnetti. The major findings were, that there is a greater segregation of the inputs from the fingers/hand within the cuneate compared with input form the toes/foot within the gracile. In both nuclei, cell clusters can be identified as cytochrome oxidase dense blotches, reactive also for the activity-dependent enzyme nitric oxide synthase. In the cuneate, cell clusters were apparent as six main cytochrome oxidase/nitric oxide synthase-reactive ovals arranged in a medial to lateral sequence. In contrast in the gracile, a higher degree of parcellation was noted and several cytochrome oxidase/nitric oxide synthase blotches were distributed along the rostrocaudal axis of the nucleus. This different architecture parallels differences in the organization of the inputs from the hand and from the foot. In the cuneate, cholera toxin B subunit conjugated to horseradish peroxydase labeled terminals from the glabrous and hairy skin of digits d1 to d5 segregated in each of the five most lateral cytochrome oxidase/nitric oxide synthase blotches. Afferents from the thenar, palmar pads and hypothenar overlapped with those from digit 1, digit 2 to digit 4 and digit 5, respectively. Inputs from wrist arm and shoulder were segregated in the most medial blotch. In the gracile, multiple foci of cholera toxin B subunit conjugated to horseradish peroxydase labeled terminals were observed upon injections of single sites in the toes or plantar pads. Although in multiple foci, inputs from different toes segregated from one another as well. Terminals from the plantar pads appeared to converge on the same cytochrome oxidase/nitric oxide synthase blotches targeted by inputs from the toes. In both the cuneate and the gracile, cytochrome oxidase/nitric oxide synthase blotches also presented intense immunoreactivity for GABA, calbindin, parvalbumin, and brain derived neurotrophic factor. Finally, in the cuneate the cell cluster region presented similarities in prosimian galagos and four species of New World monkeys, whereas it appeared more differentiated and complex in the Old Word macaque monkeys. In conclusion, the different pattern of segregation of the inputs from the hand and from the foot can be related to the different metabolic organization of the cuneate and of the gracile, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call