Abstract

Manifestations of the chemical Zeno effect (slowing down of the quantum evolution of radical pairs as a result of spin-selective recombination of exchange-bounded radical pairs) are considered. In radical pairs created in singlet and random spin states, the chemical kinetics is described by the sum of kinetic evolution (exponential) and oscillatory functions. The kinetic function is a superposition of two exponential functions. Recombination monotonically decreases the amplitude of quantum beats in singlet radical pairs. The dependence of the amplitude of quantum beats in noncorrelated radical pairs on the recombination rate constant is not monotonic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.