Abstract

Building upon earlier observations that demonstrate substantial star-to-star differences in the carbon abundances of M13 subgiants, we present new Keck LRIS spectra reaching more that 1.5 mag below the M13 main-sequence turnoff (to V ≈ 20). Our analysis reveals a distribution of C abundances similar to that found among the subgiants, implying little change in the compositions of the M13 stars at least through the main-sequence turnoff. We presume these differences to be the result of some process operating early in the cluster history. Additional spectra of previously studied bright M13 giants have been obtained with the 5 m Hale Telescope. A comparison of C abundances derived using the present methods and those from the literature yield a mean difference of 0.03 ± 0.14 dex for four stars in common with the 1996 study by Smith et al. and 0.14 ± 0.07 dex for stars also observed in Suntzeff's 1981 survey (if one extreme case is removed). We conclude that the lower surface C abundances of these luminous giants as compared with the subgiants and main-sequence stars are likely the result of mixing rather than a difference in our abundance scales. NH band strengths have also been measured for a handful of the most luminous M13 turnoff stars. While molecular band formation in such stars is weak, significant star-to-star NH band strength differences are present. Moreover, for the stars with both C and N measurements, differences between stars in these two elements appear to be anticorrelated. Finally, the most recent C and N abundances for main-sequence, main-sequence turnoff, and subgiant stars in 47 Tuc, M71, M5, and the present M13 data are compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call