Abstract

The Dark Energy Spectroscopic Instrument (DESI) is currently measuring the spectra of 40 million galaxies and quasars, the largest such survey ever made to probe the nature of cosmological dark energy. The 4 m Mayall telescope at Kitt Peak National Observatory has been adapted for DESI, including the construction of a 3.°2 diameter prime focus corrector that focuses astronomical light onto a 0.8 m diameter focal surface with excellent image quality over the DESI bandpass of 360–980 nm. The wide-field corrector includes six lenses, as large as 1.1 m in diameter and as heavy as 237 kilograms, including two counterrotating wedged lenses that correct for atmospheric dispersion over zenith angles from 0° to 60°. The lenses, cells, and barrel assembly all meet precise alignment tolerances on the order of tens of microns. The barrel alignment is maintained throughout a range of observing angles and temperature excursions in the Mayall dome by use of a hexapod, which is itself supported by a new cage, ring, and truss structure. In this paper we describe the design, fabrication, and performance of the new corrector and associated structure, focusing on how they meet DESI requirements. In particular, we describe the prescription and specifications of the lenses, design choices and error budgeting of the barrel assembly, stray light mitigations, and integration and test at the Mayall telescope. We conclude with some validation highlights that demonstrate the successful corrector on-sky performance, and we list some lessons learned during the multiyear fabrication phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.