Abstract

In this letter, we present charge measurements of micro-particles in the spatial afterglow (remote plasma) of an inductively coupled low pressure radiofrequency plasma. The particle afterglow charge of , being deducted from their acceleration in an externally applied electric field, is about three orders of magnitude lower compared to the typical charge expected in the bulk of such plasmas. This difference is explained by a relatively simplistic analytical model applying orbital motion limited theory in the afterglow region. From an application perspective, our results enable further understanding and development of in situ plasma-based particle contamination control for ultra-clean low pressure environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.