Abstract

AbstractHepatocellular carcinoma (HCC) is a deadly cancer that emerges from a continuous progression of liver cells from normal to abnormal, often following infections by hepatitis B/C viruses (HBV/HCV), liver fibrosis, and liver cirrhosis (LC), ultimately culminating in cancer. However, there is currently limited systematic molecular analysis of biomarkers at different stages of HCC progression using multi‐omics approaches. We carried out an innovative pipeline by utilizing targeted proteomics and metabolomics to identify potential biomarkers for early detection of HCC in 316 participants, including healthy adults and patients diagnosed with HBV, HCV, LC, and HCC from three independent cohorts. We first established a detailed database of candidate biomarkers for HCC containing 3059 proteins and 103 metabolites, and identified pivotal candidates implicated in the progressive trajectory of liver cancers. Through our developed DeepPRM, scheduled multiple reaction monitoring (MRM)‐targeted approach, and machine learning‐based computational pipeline, we identified an eight‐biomolecular‐based combination with an accuracy rate of 91.43% for early diagnosis of HCC, and a 12‐biomolecular‐based combination with an accuracy rate of 80.00% for detecting changes in HBV–LC progression. These two biomarker combinations significantly improved accuracy compared to traditional tumor biomarkers. Our extensive analysis provides valuable proteomic and metabolomic data resources that will contribute to a deeper understanding of liver disease progression and enhance the identification of potential therapeutic targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.