Abstract

The influence of iron nanoparticle (INP) addition (75 ppm) and hydrogen enrichment (10 lpm) with waste cooking palm biodiesel blend (WCB) on a CRDI diesel engine is evaluated. A blend of 20% WCB and 80% diesel is used, and the dosing level of INP has been kept at 75 ppm, which has been decided based on the oxygen content of biodiesel. Results indicate that the combination of H2 enrichment and INP addition improves the BTE and BSFC of biodiesel blends as that of diesel. A maximum improvement of BTE of 7.1% than that of diesel is obtained at 90% loading. The combined impact of better hydrogen combustion characteristics and improved air-fuel mixing with nanoparticles reduces CO and HC emissions by 37.5% and 41.8%, respectively, for the WCB fuel sample. However, NOX emission shows an elevation of 27.4% compared to diesel. Combustion parameters, namely ICP (80.1 bar) and HRR (89.5 J/˚CA) indicate an improvement of 5.3% and 6.7% compared to diesel for WCB + INP + H2. This is owing to the combination of hydrogen's rapid flame speed and INP-added biodiesel's increased thermal conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call