Abstract

The natural (S0) and chemically modified Phanerochaete chrysosporium including the methylation of amino groups (S1), acetylation of hydroxyl groups (S2), lipid removal (S3), esterification of carboxyl groups (S4), and base hydrolysis (S5) were characterized, and their sorption for phenanthrene (PHE) was investigated. The sorption isotherm of PHE on natural biomasses was apparently linear, while it was nonlinear for the modified ones. The partition coefficient (K d ) describing the sorption affinity of PHE by biomasses followed the order of S0 (9.24 L g(-1)) > S5 (8.94 L g(-1)) > S1 (7.13 L g(-1)) > S2 (6.97 L g(-1)) > S3 (6.38 L g(-1)) > S4 (3.51 L g(-1)) and decreased as temperature increased. The PHE adsorption fitted well to the pseudo-second-order kinetic model, and the sorption capacity was in the order of S5 (2041.5 μg g(-1)) > S0 (1768.8 μg g(-1)) > S2 (1570.9 μg g(-1)) > S1 (1552.9 μg g(-1)) > S3 (1346.4 μg g(-1)) > S4 (991.0 μg g(-1)). Moreover, the π-π and electron donor-acceptor interactions may govern PHE sorption which processed spontaneously and exothermally. The natural and modified biomasses, especially the base hydrolysis treated ones, were economical and effective biosorbents for PHE removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.