Abstract

Hematite nanoparticles (NPs) were studied as a sorbent for hydrophobic organic contaminants (OCs) under natural ambient conditions through specially designed contrasting solution chemistry of electrolyte. Ionizable pentachlorophenol (PCP) and non-ionizable phenanthrene (PHE) were selected as representative OCs. The sorption capacities of PCP and PHE were pH-dependent, and a larger amount of PCP was sorbed at pH values below its pKa (4.75). However, the PHE sorption capacity was higher at relatively high or low pHs (e.g. below 4.0 and above 10.0), possibly due to the larger available surface area of the hematite NPs, caused by the higher values of net charges and charge density. Changes in pH might thus affect the sorption of OCs by hematite NPs, through modification of the surface characteristics of the sorbent and the electronic properties of the sorbate molecules. The influence of different ionic strengths indicated that the amounts of PCP and PHE sorbed by hematite NPs decreased as a concentration function of different types of ions (e.g. Na+, K+, Mg2+ and Ca2+), with the underlying mechanism possibly being due to four interactions i.e. hydrogen-bonding, competitive sorption by ions in the ambient solution, screening effects and aggregation effects. The results confirmed that the surface chemistry of hematite NPs, the chemical properties of PCP and PHE, and solution chemistry (e.g. pH and ionic strength) of the electrolyte all played an important role in PCP and PHE sorption by hematite NPs. By comparison of both sorption capacity and ecologic advantages, our results suggested that natural hematite NPs would be more competitive and efficient for PCP and PHE sorption than engineered NPs. This finding increases our knowledge regarding the environmental function of natural NPs (such as hematite NPs) for OC remediation through manipulating their interfacial behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call