Abstract

Objective To investigate the characteristics of myocardial injury and its underlying mechanism in rats resuscitated from cardiac arrest. Methods Forty-two male Wistar rats were randomly(random number) assigned into the post-resuscitation (PR) 4 h, PR 24 h, PR 48 h, and sham groups. Ventricular fibrillation was induced by transcutaneous electrical epicardium stimulation and untreated for 6 min, followed by cardiopulmonary resuscitation (CPR). Myocardial function, glucose metabolism, myocardial ultrastructure, the status of mitochondrial permeability transition pore (MPTP) and mitochondrial membrane potential (MMP) were evaluated at different time points. Results Myocardial dysfunction was found at 4 h after restoration of spontaneous circulation (ROSC). The ejection fraction and cardiac output were decreased (all P 0.05). At 4 h and 24 h after ROSC, the mitochondria was swollen and the mitochondrial crista was sparse, but the myocardial ultrastructure was complete. Conclusions Post resuscitation myocardial dysfunction occurs after ROSC and the myocardial dysfunction is completely reversible at 48 h after ROSC, which may be related to the reversibility of myocardial injury and the gradual recovery of mitochondrial structure and function. Key words: Cardiac arrest; Cardiopulmonary resuscitation; Post resuscitation myocardial dysfunction; Glucose metabolism; Mitochondrial permeability transition pore; Mitochondrial membrane potential

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call