Abstract

Some microbial single-cell proteins are capable of producing synergistic crosslinking interactions with edible proteins by rational regulation. Herein, we reported that salt soluble proteins (RGP) extracted from Rhodotorula glutinis in an alkaline and saline system may combine with myofibrillar proteins (MP) by transglutaminase (TG) polymerization to form improvable irreversible thermal co-gels. The combination of MP, RGP, and TG, namely restructured MP gels, led to significantly enhanced water holding capacity (WHC), up to 90.76 ± 1.88% (% of retained water) and textural properties (hardness, springiness, and adhesiveness) as well as decreases of ‘gauche-gauche-gauche’ SS bonds and α-helix conformations and increases of ‘gauche-gauche-trans’ SS bonds and β-fold conformations, compared to MP and MP-RGP groups. Differential scanning calorimetry analysis validated that thermostability of myosins and actins from MP was reduced after using RGP, TG, and their combination, and unfolding and denaturation of myosin occurred easily during thermal co-gelation by TG and/or RGP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call