Abstract

Functional properties of heat-induced gels prepared from microbial transglutaminase (TG)-treated porcine myofibrillar protein (MP) containing sodium caseinate with or without konjac flour (KF) under various salt concentrations (0.1, 0.3 and 0.6 M NaCl) were evaluated. The mixed MP gels with KF exhibited improved cooking yields at all salt concentrations. TG treatment greatly enhanced gel strength and elasticity (storage modulus, G′) at 0.6 M NaCl, but not at lower salt concentrations. The combination of KF and TG improved the gel strength at 0.1 and 0.3 M NaCl and G′ at all salt concentrations, when compared with non-TG controls. Incubation of MP suspensions (sols) with TG promoted the disappearance of myosin heavy chain and the production of polymers. The TG-treated MP mixed gels had a compact structure, compared to those without TG, and the KF incorporation modified the gel matrix and increased its water-holding capacity. Results from differential scanning calorimetry suggested possible interactions of MP with KF, which may explain the changes in the microstructure of the heat-induced gels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call