Abstract

Cryopreservation of rooster semen is essential for conserving genetic resources, genetic improvement, and increasing productivity. However, the nature of avian sperm presents a global issue in ensuring superior frozen semen for artificial insemination. Thus, the present study aimed to evaluate the impact of using dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), and ethylene glycol (EG) as cryoprotectants on post-thawed sperm motility, quality, antioxidant indicators, and fertilizing capacity. Twice a week, fresh semen ejaculates were collected from 15 adult roosters and immediately evaluated to constitute a pool from clean and qualified samples. The pooled semen was further diluted at a ratio of 1:2 (v/v) with an extender and then subjected to a freezing protocol in a liquid nitrogen vapor after adding a cryoprotectant solution containing 6% of either DMA, DMSO, or EG, respectively. After thawing, characteristics of sperm motion, quality, antioxidants, and fertilizing ability were evaluated and compared to fresh and cooled semen as controls. The results demonstrated that semen cooling negatively affected some parameters of sperm motility, quality, antioxidant biomarkers, and fertility. In comparison to the DMSO and EG groups, employing DMA considerably (P < 0.05) raised the percentages of sperm progressive motility, viability, plasma membrane intactness, and DNA integrity. The DMA group showed a significant increase in the catalase and glutathione reduced antioxidant enzyme activity and a reduction in nitric oxide and lipid peroxidation. After artificial insemination, the DMA and DMSO groups exhibited considerably (P < 0.05) better rates of hatchability and fertility than the EG group. It is concluded that freezing extenders containing 6% DMA is better than DMSO or EG to improve the post thaw semen quality and fertility in chickens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.