Abstract

The changes in Helmholtz free energies and entropies in dense fluids have been evaluated using three known analytical expressions for radial distribution functions (RDFs) of Lennard–Jones (L-J) fluid. This method provides a simpler and a more expeditious way for the calculation of free energy and entropy in L-J dense fluids through statistical mechanics. Previously, integral equations or perturbation theories were used for this purpose. Such approach not only tests the power of analytical distribution functions in predicting the changes in Helmholtz free energies and entropies, but also specifies better expressions in determining these properties. The results are compared with experimental data and an accurate analytic equation of state for the L-J fluid. It is shown if an expression properly presents RDFs as a function of interparticle distance, density and temperature, it is possible to calculate the changes in Helmholtz free energies and entropies from analytical distribution functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call