Abstract
We derive an explicit c-function expansion of a basic hypergeometric function associated to root systems. The basic hypergeometric function in question was constructed as an explicit series expansion in symmetric Macdonald polynomials by Cherednik in case the associated twisted ane root system is reduced. Its construction was extended to the nonreduced case by the author. It is a meromorphic Weyl group invariant solution of the spectral problem of the Macdonald q-dierence operators. The c-function expansion is its explicit expansion in terms of the basis of the space of meromorphic solutions of the spectral problem consisting of q-analogs of the Harish-Chandra series. We express the expansion coecients in terms of a q-analog of the Harish-Chandra c-function, which is explicitly given as product of q-Gamma functions. The c-function expansion shows that the basic hypergeometric function formally is a q-analog of the HeckmanOpdam hypergeometric function, which in turn specializes to elementary spherical functions on noncompact Riemannian symmetric spaces for special values of the parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.