Abstract

Anaphase chromosome segregation depends on forces exerted by spindle microtubules. In the current model, forces on chromosomes are mediated through the spindle poles: sliding of antiparallel microtubules in the central spindle pushes poles apart, while kinetochore microtubule (kMT) depolymerization pulls chromosomes towards the poles. Here we show that the central spindle is directly linked to the chromosomes rather than the poles in anaphase, based on three lines of evidence. Chromosomes in monopolar spindles can move away from the pole, consistent with forces exerted by antiparallel microtubule sliding. In bipolar spindles, kMT depolymerization is constrained by suppressing central spindle sliding, indicating kinetochore linkage to the central spindle. Finally, increasing the rate of kMT depolymerization slows pole separation without increasing chromosome separation velocity. We conclude that central spindle sliding drives anaphase chromosome separation, while kMT depolymerization limits spindle elongation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.