Abstract

Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder with manifestations including severe nose bleeding and microhemorrhage in brains. Despite being the second most common inherited bleeding disorder, the pathophysiological mechanism underlying HHT-associated hemorrhage is poorly understood. HHT pathogenesis is thought to follow a Knudsonian two-hit model, requiring a second somatic mutation for lesion formation. Mutations in activin receptor-like kinase 1 ( ALK1 ) gene cause HHT type 2. We hypothesize that somatic mutation of Alk1 in arterial endothelial cells (AECs) leads to arterial defects and hemorrhage. Here, we mutated Alk1 in AECs in postnatal mice using Bmx(PAC)-Cre ERT2 and found that somatic arterial endothelial mutation of Alk1 was sufficient to induce spontaneous epistaxis and multifocal cerebral microhemorrhage. This bleeding occurred in the presence of tortuous and enlarged blood vessels, loss of arterial molecular marker Efnb2 , disorganization of vascular smooth muscle, and impaired vasoregulation. Our data suggest that arterial endothelial deletion of Alk1 leading to reduced arterial identity and disrupted vascular smooth muscle cell coverage is a plausible molecular mechanism for HHT-associated severe epistaxis. This work provides the first evidence that somatic Alk1 mutation in AECs can cause hemorrhagic vascular lesions, offering a novel preclinical model critically needed for studying HHT-associated epistaxis, and delineating an arterial mechanism to HHT pathophysiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.