Abstract

We classify the global phase portraits in the Poincaré disc of the generalized Kukles systems ẋ=−y,ẏ=x+axy6+bx3y4+cx5y2+dx7,which are symmetric with respect to both axes of coordinates. Moreover using the averaging theory up to sixth order, we study the cyclicity of the center located at the origin of coordinates, i.e. how many limit cycles can bifurcate from the origin of coordinates of the previous differential system when we perturb it inside the class of all polynomial differential systems of degree 7.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.