Abstract
SummaryPersistent influenza C virus infection of MDCK cells perpetuates the viral genome in a cell-associated form. Typically, virus production remains at a low level over extended periods, in the absence of lytic effects of replication. In this study, we demonstrate that persistently infected cells are very restricted in permissiveness for superinfection. By reconstitution experiments, using bovine brain gangliosides as artificial receptors, the degree of super-infection was markedly increased. Analysis of cellular receptor expression revealed reduced concentrations of sialoglycoproteins in general and a limited presentation of the major receptor gp40. Cocultures of persistently infected and uninfected cells (the latter carrying normal receptor levels) initiated a transient rise in virus titers. This kind of induction of virus synthesis appeared to be mainly receptor-linked, since a receptor-deprived subline, MDCK II, did not give rise to a similar effect. Susceptibility of MDCK II cocultures could be partly restored by ganglioside treatment. In accordance to related virus systems, these findings on influenza C virus suggest a role of cell receptor concentrations in the regulation of long-term persistence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.